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Figure 1: User-guided correction of reconstruction errors in Structure-from-Motion (SfM) workflows. (a) Initial reconstruction
results showing both correctly and incorrectly estimated camera poses. (b) a user adjusts camera poses, and (c) defines camera
view overlaps. The system identifies false matches based on the overlap of these camera views. (d) Improved reconstruction
result with accurate camera poses after user-guided false match removal.

Abstract

We propose a user-guided method to correct reconstruction er-
rors in Structure-from-Motion (SfM) processes. SfM takes a set
of camera images as input and then estimates the cameras’ poses
and three-dimensional point clouds based on keypoint matching.
However, scenes with repetitive or similar structures often result
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in false matches, leading to inaccuracies in camera pose estima-
tion. While automatic methods for removing false matches exist,
achieving perfect accuracy with them remains challenging. Con-
versely, human intervention can ensure high accuracy, but manual
identification and elimination of false matches is a tedious and
error-prone process. Our proposed method strikes a balance by
introducing a more efficient user-guided approach. Users provide
approximate camera poses, which the system then uses to detect
false matches. Specifically, the system examines overlaps between
view frustums of camera pairs post user adjustments, classifying
pairs as false matches if no overlap is found. This method leverages
the user’s recollection of camera movements during scene capture
to guide the reconstruction process. Evaluation with test cases and
a user study confirm that our technique can efficiently remove false
matches and enable accurate reconstruction of camera poses.
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1 Introduction

Structure-from-Motion (SfM) is a crucial technique in three-dimensional

(3D) reconstruction that estimates camera poses (positions and ori-
entations), as well as the point cloud of a scene, from multiple 2D
images. SfM constitutes the initial workflow in image-based 3D
reconstruction, and its results serve as the foundation for recent
advanced reconstruction methods such as Neural Radiance Fields
(NeRF) [22] and 3D Gaussian Splatting [16].

However, SfM faces several challenges. One significant issue
arises when similar or identical structures are present within the
captured space, leading to false keypoint matches. When false
keypoint matches occur, the relative positions between cameras
are incorrectly estimated, which can cause the reconstruction to
fail. Specifically, cameras may be reconstructed at positions dif-
ferent from their actual positions at the capture time, resulting in
decreased accuracy or catastrophic collapse of the reconstructed
scene.

Several approaches are used to correct reconstruction errors
in SfM. The most direct method is to capture additional images.
SfM can fail when there is insufficient matching between images.
Therefore, adding images taken from new viewpoints can increase
the number of matches and improve the reconstruction accuracy.
However, this method is feasible only when additional capture is
possible and becomes challenging in environments that change
frequently or are difficult to access.

When additional capture is impractical, adjustments to SfM pa-
rameter settings, such as the thresholds and methods for keypoint
matching, can be attempted to improve reconstruction. SfM soft-
ware like COLMAP [27] allows for various parameter adjustments,
including keypoint extraction methods and the search range for im-
age matching. However, determining which parameter changes will
be effective is often not intuitive, and merely adjusting parameters
may not suffice to correct reconstruction errors.

Recent studies have highlighted that similar structures present in
the reconstruction environment can cause keypoint ambiguity, lead-
ing to false matches [11]. For example, when objects with similar
appearances at the front and back are photographed from different
directions, SfM may misinterpret them as being captured from only
one direction [34]. To address such false matches, a machine learn-
ing (ML) approach has been proposed [4] to automatically detect
and remove false matches via image-pair classifications, followed
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by reconstruction. However, machine learning approaches depend
on training data and are only effective in environments reflected in
that data, limiting their generalizability.

In this paper, we propose an interactive method to efficiently
correct reconstruction errors by removing false matches using min-
imum human intervention. Specifically, users remove false matches
and perform reconstruction based on the improved matching in-
formation. A straightforward method involves users identifying
cameras with incorrect poses in the reconstruction results and man-
ually removing false matches associated with those cameras by
visually comparing matched camera images. However, it requires
significant effort and time, making it impractical for regular use.

Our user-guided approach removes false matches by allowing
users to manually specify the approximate camera poses to guide
the reconstruction process. This method assumes that users have
knowledge of or can easily identify the image sequences and the
capturing environment of the reconstruction target. Users iden-
tify and adjust images with incorrect camera poses in a top-down
view showing the reconstructed scene. Then, matches between two
images without overlap of their view frustums are removed, and
reconstruction is performed again. It is not necessary for a user
to set the cameras’ poses precisely because those poses are used
just as guidance for false match removal and the final poses are
determined by bundle adjustment when performing reconstruc-
tion. This iterative refinement process is repeated until the user
obtains satisfactory results. Our proposed approach focuses on the
correction of SfM errors in small-scale datasets or the subsets of
large-scale datasets.

To evaluate our approach, we constructed a small-scale 3D re-
construction dataset consisting of 48 images designed to replicate
situations prone to false matches. We confirmed that applying stan-
dard SfM methods to this dataset resulted in false matches and
reconstruction failures. To verify the effectiveness of our proposed
method, we compared it with other reconstruction correction meth-
ods, including parameter adjustments and machine learning-based
false match removal techniques. Furthermore, we conducted a user
study to assess the effectiveness of false match removal with our
method compared to a baseline, in which the user manually identi-
fies and removes false image matches. The results demonstrated that
participants were able to more successfully remove false matches
with our technique and achieve higher reconstruction quality with
less effort compared to the baseline. Based on our findings, we
discuss the effectiveness and limitations of our approach.

To summarize, our contributions are threefold:

e We propose a novel user-guided method that removes false
matches in SfM by utilizing user-provided camera poses and
view frustums.

e With our dataset, we demonstrate the effectiveness of our
technique and conduct comparative evaluations with other
correction methods.

e We show through a user study that our method enables high-
precision reconstruction corrections with less effort com-
pared to manually identifying and removing false matches.
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2 Related Work

2.1 Structure-from-Motion and Its Applications

Structure-from-Motion (SfM) is a well-established technique in
computer vision and photogrammetry that involves reconstructing
3D structures from 2D image set taken from different viewpoints.
This technique simultaneously estimates the camera poses and the
sparse 3D structure of the scene.

From early algorithms and mathematical frameworks by Tomasi
and Kanade [29] to recover 3D structure and camera motion from
image correspondences, the process has been iteratively refined

since [1, 9], with robust software tools, such as the popular COLMAP [27],

now available to effectively perform various 3D reconstruction
tasks. COLMAP operates by extracting keypoints, matching them
across multiple views, and then optimizing both camera poses and
3D points based on incremental SfM. In a recent study, Pan et.al
proposed GLOMAP as a new general-purpose system that takes a
global SfM approach for superior accuracy and robustness [26].

Recent advancements in 3D reconstruction and rendering heav-
ily rely on COLMAP for pre-processing. For instance, approaches
like NeRF (Neural Radiance Fields) [22] and its derivatives, includ-
ing Instant NGP [23], Zip-NeRF [3], Mip-NeRF [2], NeusS [32], and
NeRF++ [38], require accurate camera poses, which are often ob-
tained with COLMAP, to initialize their rendering pipelines.

Similarly, 3D Gaussian Splatting [16], including recent works [5,
8, 21, 35-37, 39], also employ COLMAP to estimate camera pa-
rameters and reconstruct sparse 3D points. In these applications,
improving the accuracy of COLMAP’s reconstructions, particu-
larly with respect to camera pose estimation and the completeness
of the 3D point cloud, directly benefits the quality of subsequent
reconstructions using NeRF or 3D Gaussian Splatting.

Other methods like VSRD [20] utilize 3D reconstruction to achieve
instance-level recognition in complex 3D scenes. In such cases, ac-
curate camera positioning and high-quality 3D point clouds, as
produced by COLMAP, are essential to improving object detection
and recognition performance.

In conclusion, SfM, particularly through tools like COLMAP,
has become critical for 3D reconstruction. Enhancing COLMAP’s
reconstruction accuracy and completeness will benefit not only
applications based on NeRF and 3D Gaussian Splatting but also
other techniques that rely on accurate 3D scene understanding.

2.2 Correction of SfM Failures

Structure-from-Motion (SfM) techniques, especially those imple-
mented in COLMAP [27], can achieve high-quality results in 3D
reconstruction from images, but they often fail when dealing with
scenes that contain visually similar or repetitive patterns. In such
cases, due to the strong resemblance between parts of the scene,
COLMAP may erroneously match images from different locations,
resulting in incorrect 3D reconstructions. These false matches can
lower the overall accuracy of the reconstruction and, in some cases,
prevent COLMAP from generating a valid 3D point cloud or esti-
mating accurate camera poses.

Several methods have been proposed to improve COLMAP’s
performance in handling scenes with similar or repetitive struc-
tures [4, 7, 11, 15, 34]. One notable example is the work by Cui
et al. [7], which introduces a global optimization approach using
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similarity averaging to refine camera poses and structure. Similarly,
Heinly et al. [11] present a post-processing method that detects
and corrects errors caused by duplicate scene structures, leading to
more accurate reconstructions.

Kataria et al. [15] provide a solution by introducing a subset
of reliable matches for camera pose estimation, helping to reduce
ambiguity in complex scenes. Finally, Doppelgangers [4] proposes a
learning-based approach for distinguishing between visually similar
but distinct 3D surfaces. This method effectively reduces errors in
SfM pipelines by disambiguating matches in challenging cases and
improving reconstruction results.

Because these automatic SfM correction methods heavily rely on
underlying problem settings and training data, users have limited
ways of intervention when these methods fail to correct errors.
Control points in the RealityCapture software! serve as tools for
user intervention in 3D reconstruction. While they are effective for
enhancing reconstruction accuracy and merging models, correcting
incorrectly estimated camera poses is challenging for users. To ad-
dress these remaining challenges, we propose a user-guided method
aimed at further enhancing COLMAP’s reconstruction accuracy in
such scenes.

2.3 Interaction Design in Human-in-the-Loop
Computer Vision

Several studies have explored the effectiveness of interactive design
for human-in-the-loop frameworks for the computer vision domain.
For example, such kinds of systems have significantly enhanced
the efficiency of annotation and data augmentation in computer
vision tasks [12, 12, 17]. LabelAR [17] is an augmented reality (AR)
interface for automatically generating 2D image bounding boxes
by guiding users to capture images from various angles.

Recent studies have also focused on human-in-the-loop frame-
works to achieve effective training and inference of computer vision
models [10, 13, 18, 24, 33]. Zensor [18] utilizes real-time feedback
from online crowd workers for automatically annotating datasets
used to train machine learning models working as intelligent sen-
sors. SwipeGANSpace [24] is a human-in-the-loop approach in
which users can generate desired images by exploring the latent
space of StyleGAN [14] using simple swipe operations. Weber et
al. [33] propose the combination method between the human-in-
the-loop process and Deep Image Prior [31].

In addition, there are some user interventions related to the 3D
domain of computer vision [17, 19, 25, 25, 30]. iPose [19] demon-
strates the importance of user involvement in reconstructing hu-
man poses from video data. Their system enables users to adjust
3D poses using 2D input, making it easier to handle complex poses
and ambiguous visual information. PhotoCity [30] is a competitive
game designed to make users proficient at collecting useful image
datasets for 3D modeling.

Overall, designing interactions for human-in-the-loop computer
vision is crucial for overcoming the limitations of fully automated
methods. In particular, our research concentrates on facilitating
effective human intervention in SfM processes. By exploring and
developing interactive methods that enable users to correct false

!https://www.capturingreality.com
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matches, we address the challenges that fully automated recon-
struction often cannot overcome.

3 Proposed Method: User Guided Removal of
False Matches in SfM

3.1 Problem Definition and Target Setting

The problem addressed in this study is the situation where, when
users utilize Structure-from-Motion (SfM) for 3D reconstruction
from images, false matches between images lead to erroneous es-
timation of camera poses, as well as reconstructed point clouds.
In SfM software such as COLMAP [27], keypoint extraction and
image matching are performed in the initial stage of reconstruc-
tion. During the keypoint extraction, an SfM algorithm identifies
distinctive visual features in the images, such as corners or edges,
which can be reliably recognized across different views. In the im-
age matching stage, these keypoints are compared across pairs of
images to find correspondences, ensuring that overlapping features
between images are accurately identified, and the results are stored
in a matching database?. Subsequently, based on this database, the
spatial relationships between cameras and the 3D positions of cor-
responding keypoints are reconstructed. However, if a false match
exists during keypoint matching, the reconstruction error increases.
This issue is particularly prevalent when multiple structures exhibit-
ing similar visual patterns exist within the captured environment,
leading to frequent false matches. We address this type of prob-
lem and attempt to correct reconstruction errors by removing false
matches through an effective user-guided process.

We specifically consider scenarios where re-capturing images
is difficult. Capturing additional images can improve the accuracy
and quality of the reconstruction, but it is not always feasible. In
particular, changing environments (e.g., event venues, construction
sites) and where access is inherently challenging (high-security
sites, hospitals, etc.) cannot be sampled again in the same con-
ditions. Furthermore, we make the following assumptions about
the users of our system: 1) They have basic practical knowledge
of 3D reconstruction and how image data should be captured for
SfM. 2) They have some understanding of the environment to be
reconstructed, and they know the paths that the camera followed
when the scene was captured. In essence, we consider users who
either have captured the scene themselves or can identify the scene
and its capturing conditions using the source images or additional
information they have.

3.2 Method Overview

Our approach is based on an iterative refinement process, where
users utilize their knowledge of the captured scene to adjust camera
poses and their view frustums when they notice errors. The system
then updates the 3D reconstruction to reflect those corrections
(Figure 2).

Specifically, users identify incorrectly positioned cameras and
adjust their poses to approximately match their real positions. Users
also adjust the view frustums of these cameras. If the view frustums

2More precisely, the system finds matches among keypoints in the images. Then, if
sufficient matches between keypoints in two images are detected, the image pair is
registered as a match in the matching database. When the pairing of two images is
removed, then all the matches between keypoints in the image pair are removed.
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of two cameras do not overlap, the system judges that the match
between the two camera images is false and removes the images
from the matching database. Subsequent SfM reconstruction based
on the updated matching database may return improved camera
poses and enhance the overall reconstruction quality. This process
can be repeated until the user is satisfied with the results.

3.3 User-Guided Removal of False Matches

We describe our user-guided method for removing false matches.

3.3.1 Identifying Incorrectly Reconstructed Cameras. The user ex-
amines the sequence of camera images and the reconstruction
results (camera poses and point cloud) to identify cameras that
have been incorrectly positioned in the 3D scene. Objects in the
reconstructed point cloud that are placed in incorrect positions
serve as clues to track the causes of reconstruction errors. The
(dis)continuity of the camera trajectory may also provide another
clue. To facilitate the identification of such errors, our system si-
multaneously presents the user with a top-down view of the recon-
structed point cloud and the detected camera poses, as well as the
sequence of camera images.

3.3.2 Manual Adjustment of Camera Poses. The user manually
adjusts the inaccurately reconstructed camera poses to approximate
their actual positions during capture. Leveraging their knowledge
of the cameras’ capture paths, users can position the cameras close
to their true locations. However, due to the limitations of manual
placement and operating a 2D user interface, precisely specifying
3D camera poses can be challenging. Consequently, these user-
specified poses serve primarily as guidance for the system to refine
the reconstruction. Once false matches are effectively removed, the
system optimizes the camera poses in subsequent reconstruction
stages.

3.3.3 Adjusting Matchability View Frustums to Guide False Match
Removal. After adjusting the camera poses, the user can tune the
extent of false match removal by refining "matchability" view frus-
tum, imitating the real view frustum of each camera. While the
original view frustum is three-dimensional, for simplicity, we rep-
resent these frustums as two-dimensional isosceles triangles with
the camera position at the apex (Figure 3). The apex angle of these
triangles corresponds to the camera’s field of view (FoV), which
determines the width of the area captured by the camera. The
height of the triangle represents the shooting range, indicating the
maximum distance the camera can capture in that direction. By
manipulating the base length (FoV) and the height (shooting range),
the user can precisely control the overlap between each camera’s
shooting ranges. Our method operates under the assumption that
matching does not occur between cameras whose view frustums
do not overlap since common keypoints must be visible in both
camera views. The system allows the user to iteratively adjust these
parameters until the reconstruction results are satisfactory.
Defining view frustums in two dimensions simplifies the user’s
task of specifying camera views. Humans have limited spatial aware-
ness when interpreting complex three-dimensional spaces, espe-
cially when dealing with numerous cameras. Accurately assessing
and defining overlaps among many cameras in 3D space can be
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Figure 2: Overview of the proposed user-guided Structure-from-Motion (SfM) workflow. The process starts with input images
and metadata, followed by keypoint extraction and matching, which are stored in a matching database. After the initial
reconstruction, camera positions and 3D points are estimated. If the user finds incorrect camera positions in the reconstruction,
they manually adjust the camera positions. Based on those new positions, the system removes false matches and updates the
reconstruction. The process is repeated until all cameras are correctly positioned and the 3D scene is properly reconstructed.
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Figure 3: User-guided removal of false matches. (a) The user
compares correctly and incorrectly estimated camera poses,
(b) selects and manually adjusts incorrect camera poses, and
(c) modifies the camera’s view frustum. That information
allows efficient identification of false matches and enables
iterative refinement of reconstructed camera poses based on
view frustum overlaps.

cognitively demanding and error-prone. By representing view frus-
tum as two-dimensional regions (i.e., isosceles triangles on a plane),
users can more intuitively and efficiently specify the approximate
areas covered by each camera. This simplification reduces cognitive
load and facilitates the identification of overlaps between camera
views, which is crucial for the false match correction process. While
this approach ignores the 3D nature of true view frustum, it strikes
a balance between usability and effectiveness, allowing users to con-
tribute meaningfully to the correction without being overwhelmed
by spatial complexity. This simplification works well for scenes
where camera moves are mainly horizontal, but it faces challenges
when camera motion is more three-dimensional.

3.4 Algorithm for False Match Removal

Following the user’s manual adjustments of the cameras, the sys-
tem updates the database, removing false matches among images.
We adopt exhaustive matching for the initial image matching to
consider potential matches between all camera pairs. In the false
match removal step, we remove matches whose view frustums do
not overlap. Algorithm 1 shows the false match removal process.
After removing false matches, reconstruction is performed based on

the updated database, and the corresponding results are presented
to the user in the scene view.

Algorithm 1 False Match Removal

Require: Cyoyed: Set of moved camera IDs

Require: C,j: Set of all camera IDs

Require: current_matches: Set of current matches

Ensure: Updated current_matches after removing false matches
1: Initialize false_matches < 0

2: for each c in Cygyeq do

3 for each ¢’ such that (c,c’) is in current_matches do
4 Compute View(c) and View(c”)

5 if View(c) N View(c’) == 0 then

6: false_matches « false_matches U {(c,¢’)}

7 end if

8 end for

9: end for

0: current_matches < current_matches \ false_matches

[

4 Prototype System

We implemented a prototype system to demonstrate and test our
proposed method.

4.1 Overview

Figure 4 shows a screenshot of the prototype system. It consists
of the following components: Component (a) displays the recon-
structed camera poses and point clouds. Component (b) is a panel
that allows the user to browse the sequence of images used in the
reconstruction. When searching for incorrectly estimated camera
poses, the user refers to components (a) and (b). When the user
hovers the mouse over an image in (b), the corresponding camera
is highlighted in green in (a). The user checks whether the esti-
mated camera poses of the images are correct, and if an incorrect
viewpoint is found, the user clicks on the corresponding image
to select the camera, then moves the camera (shown in red) in (a)
using the keyboard (arrow keys for translation and "q" and "r" keys
for rotation). The user can select and display multlple images simul-
taneously, and the poses of the selected cameras can be adjusted
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together. Additionally, by pressing the "Show/Hide Matching" but-
ton, the user can view other cameras that match the selected camera
in the matching database.

Component (c) is the UI’s status bar, which displays the system
process during which the user cannot edit, e.g., generating the
top-down view from COLMAP results, deleting matches from the
database, and executing the reconstruction.

Component (d) is a panel that displays the group of matched
images when the "Show Matching" button is pressed for a selected
image in (b). The matched cameras are connected by lines in (a). Fur-
thermore, this component supports the manual removal of matches.
When the user discovers incorrect matches in (d), they can select
them and press the "Delete Selected Matching" button to remove
the specified matches. This function can be used in combination
with our technique, and we use it as a baseline interaction method
in our user evaluation (see below).

In component (e), the user can show and hide view frustums in
the scene panel (a). When the view frustums are visible, the user
can adjust the view frustums of the selected cameras. By using the
"Delete Distant Matching" button in (f), the user can request the sys-
tem to execute false match removal based on the modified camera
poses and view parameters. By pressing the "Run Reconstruction”
button, the reconstruction process can be executed.

(2) Top-down reconstructed scene panel

(b) Camera image panel

[ (c) Status display ||(d) Image matching control panel (for baseline)

— [—]
(f) Deletion and reconstruction buttons

view FoV sliders

|(e) Camera view length / camera

Figure 4: Overview of the prototype system. It contains sev-
eral components: (a) Scene Panel, showing the 3D recon-
structed space with camera positions; (b) Camera Image Se-
quence Panel, allowing users to confirm images, showing
matching visibility for individual images, and selecting all
images for further adjustments; (c) Status Display; (d) Image
Matching Control Panel; where users can directly delete false
matches (we use this function for annotation and baseline
approach); (e) adjust view frustums of selected cameras; and
(f) delete matches between non-overlapping cameras and run
reconstruction buttons.

4.2 Implementation Details

We implemented the prototype system as a web-based application
that receives SfM reconstruction results and input images from
COLMAP. Initially, ground detection is performed on the point
cloud reconstructed by COLMAP, which, combined with camera
pose information, generates a top-down view of the reconstruction.
Users then perform adjustments on incorrectly positioned cameras,

Trovato et al.

upon which false matches are identified and marked for removal,
with COLMAP updating its matching database accordingly. The
processes of removing false matches and re-executing the recon-
struction are carried out using the Pycolmap? library. Additionally,
intermediate results are incrementally backed up, enabling users to
revert to any previous version through the command-line interface.

5 Comparison of Error Correction Methods
5.1 Data Collection

To evaluate the effectiveness of our proposed method, we con-
structed a small dataset consisting of 48 images captured with
an iPhone 12 Pro while moving through an office environment.
Multiple desks with identical textures were present in this scene,
which caused false matches in a direct reconstruction. Specifically,
when COLMAP was executed with a simple camera model (Simple
Pinhole Model) and exhaustive matching settings on this dataset,
the estimated positions of 21 out of 48 cameras were significantly
different from their actual positions, as shown in 6 (a).

Figure 5: The dataset images were captured using an iPhone
12 Pro. A total of 48 images were taken while moving through
an office environment with multiple desks with identical
textures.

5.2 Annotation of Ground-Truth False Matches

We manually labeled images corresponding to incorrectly posi-
tioned cameras to create the ground truth data for the false match
removal task. Specifically, the human labeler visually inspected all
images and removed instances with incorrect camera positions, i.e.,
cameras with different positions and orientations and with shooting
areas that do not sufficiently overlap. This task utilized the man-
ual removal function of the prototype system, which serves as the
baseline method. The labels were created by the person who cap-
tured the dataset and required more than 30 minutes to complete.
After removing false matches with this carefully curated dataset
and updating the reconstruction, we obtained high-quality results
which we use as ground truth.

Figure 6 (b) shows the reconstruction results after false match
removal. By thoroughly removing all false matches, camera posi-
tions are correctly estimated, and the quality of the 3D point cloud
is improved. However, manual removal of false matches through
visual inspection is a time-consuming task. The result shown in
Figure 6 (c) is from a user experiment discussed in Chapter 7 where
a participant (P3) performed manual removal for 5 minutes.

5.3 Error Correction with Our Proposed Method

We detail the step-by-step process by which users correct errors in
the test dataset using our proposed method. First, the user reviews

3https://github.com/colmap/colmap/tree/main/pycolmap
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(e) COLMAP result after ML-based
disambiguation [4]

(f) COLMAP result after parameter
tuning (15 trials, 30 min)

(d) COLMAP result after false match
removal using proposed Ul (5min)

(c) COLMAP result after false match
removal using baseline Ul (5min)

(9) Reconstruction after specifying 6
control points across 92 images (30 min).

Figure 6: Comparison of SfM results under various conditions. (a) COLMAP result using default parameters, where false
matches lead to significant errors in camera path estimation. (b) COLMAP result after manual false match annotation, showing
improvement in alignment. (c) Baseline UI with 5 minutes of user intervention, showing partial improvement. (d) Proposed
UI with 5 minutes of user intervention, demonstrating an accurate reconstruction. (¢) Result of an ML-based disambiguation
method [4], which provides a certain level of correction but is still prone to false matches. (f) Result of parameter tuning after
15 trials, indicating that fine-tuning can improve camera path estimation, but is time-intensive. (g) Result with 6 control points
and 30 minutes of user intervention, showing limited improvement in reconstruction accuracy.

the image sequence and reconstruction results to identify cameras
with incorrectly estimated poses. Upon examining the reconstruc-
tion results of this dataset, we found that 21 out of 48 images were
incorrectly positioned within the reconstructed 3D scene. These 21
images were further categorized into six subsequences. The user
selects images from each subsequence and adjusts their correspond-
ing camera poses. Following this, the user adjusts the camera view
frustums and performs reconstruction after removing matches be-
tween cameras whose view frustums do not overlap. Figure 6 (d)
illustrates the outcome of a 5-minute intervention carried out by a
user. This result is from one of the participants of the user study
described in Chapter 6.

5.4 Error Correction in Other Methods

We compare our proposed method with three other techniques.
The first technique is an automatic approach, while the latter two
require user intervention.

5.4.1 Machine Learning-Based Disambiguation. The first method
we examine is Doppelgangers, an automatic false match removal ap-
proach using a pre-trained classifier [4]. This method uses a binary
classifier to determine whether an image pair is a correct match or
not. Specifically, after a reconstruction failure with COLMAP, the
classifier is applied to all matched image pairs. All pairs with likeli-
hoods below a certain threshold are removed, and reconstruction
is attempted again. The advantage of this method is that it does

not require user intervention. However, if it fails, other correction
methods must be used, or the classifier must be retrained.

We ran the publicly available code and pretrained model provided
by the authors on COLMAP’s matching results for our dataset, as
shown in Figure 6 (e), which resulted in 7 out of 21 incorrect camera
positions to be corrected.

5.4.2  Parameter Tuning. We consider parameter tuning to be the
most basic form of user intervention. COLMAP offers numerous
parameters for various aspects, including camera models, keypoint
extraction, image pair matching, and reconstruction. Properly set-
ting these parameters can potentially improve the success rate of
reconstruction. However, experimenting with many parameters is
time-consuming, and given that users must evaluate the quality
of reconstruction results, automating parameter optimization is a
complex challenge.

In our experiment, we conducted 15 trials by combining 5 dif-
ferent camera models with 3 matching methods. Using the combi-
nation of the OpenCV camera model and Sequential Matcher and
parameter adjustment over a span of 30 minutes, the best configu-
ration corrected 11 out of 21 incorrect camera positions (Figure 6

(£))-

5.4.3 Control Points in RealityCapture. Lastly, we evaluate a method
implemented in the commercial software RealityCapture, which
aims to enhance reconstruction accuracy by providing hints about
the positional relationships between images through the definition
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of multiple control points captured in three or more camera images.
While this approach can effectively improve generally successful
reconstructions or assist in merging multiple reconstruction results,
it proves to be less efficient when the reconstruction process has
failed, resulting in an incorrect point cloud. In our testing, one of
the authors spent 30 minutes defining six control points across 92
images from our dataset. Despite this effort, no improvement in the
reconstruction was observed (Figure 6 (g)).

6 Representative Examples

Manually adjusted Reconstruction after

Ambiguity Initial reconstruction  camera poses  false match removal
Wby
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Cup ‘i
Oats
o
ToH A
ﬂ"ﬁﬁ
X7 g
N g A
Books I £ LU

Figure 7: Representative examples of user interventions
across three datasets for disambiguation of SfM [34]: cup,
oats, ToH, and books from the top. The blue arrows indi-
cate estimated camera poses (left). The red arrows show
user-guided estimated poses (center) and fixed camera poses
(right), respectively. User intervention successfully corrects
false matches, improving the quality of camera pose estima-
tion and point cloud reconstruction across the datasets.

We applied our method to four datasets (cup, oats, ToH, and
books) from Yan et al. [34]. Figure 7 shows the outcomes of user-
guided reconstruction for each dataset. The cup dataset contains 64
images exhibiting ambiguity because of symmetric patterns on the
cup’s outer surface. The oats dataset includes 23 images, introducing
ambiguity because it features two identical oatmeal boxes placed
side by side. The ToH dataset comprises 338 images capturing the
Temple of Heaven, a historical building characterized by identical
patterns around its surface, which also brings about ambiguity. The
books dataset consists of 20 images portraying a scene in which
stacked books are arranged in a T-shape on desks. The presence
of the same books at both ends of the T-shaped desks introduces
ambiguity as well. These types of ambiguities present challenges
for COLMAP, but they fall within the capabilities of our proposed
method.
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Following the procedure outlined in Section 5.2, we first iden-
tified sequences of cameras with incorrect poses using the cam-
era image sequence depicted in Figure 4. Subsequently, we man-
ually adjusted the erroneous camera sequences to approximate
the correct poses and then removed false matches based on the
non-overlapping areas of the user-specified camera view frustums.
Finally, we performed reconstruction and obtained corrected cam-
era poses and higher-quality point clouds compared to the initial
results from COLMAP for all datasets.

The human intervention process took approximately 2-3 minutes
for the cup dataset, where we adjusted 43 out of 64 cameras, and
similarly 2-3 minutes for the oats dataset, where all 23 cameras
were adjusted, and likewise for the books dataset, with 7 of the 20
cameras being corrected in about the same amount of time. For
the ToH dataset, which is considerably larger, adjustments were
made to 314 out of 338 cameras, requiring about 30 minutes for the
manipulations.

In summary, our method demonstrates that a small amount of
user intervention can significantly enhance SfM results in various
ambiguous scenarios, including relatively large datasets.

7 User Study

We conducted a user study to evaluate the effectiveness of our
proposed method. The task is to improve a 3D reconstruction re-
sult that had failed due to false matches. We used our dataset as
described in 5.

We recruited eight participants (2 females) with an average age
of 28.6 (SD: 6.3) from our institute. All participants had basic knowl-
edge of 3D reconstruction and three had experience in developing
3D reconstruction technologies. This study received approval from
our institution’s ethics review board.

In the study, we compared our method, where participants ad-
justed camera poses to guide the removal of false matches (Section
3), with a baseline method where participants manually deleted
false matches (Section 5.2). Our hypothesis was that our proposed
method would enable participants to remove false matches more
efficiently and improve SfM results. To ensure participants’ famil-
iarity with the environment captured in the task dataset, the study
was conducted within the actual office setting used in the dataset.

7.1 Task

Each participant was tasked with removing false matches from our
dataset using both our proposed method and the baseline technique,
each for 5 minutes. This relatively short task duration was selected
based on pilot tests, which indicated that longer use of the baseline
method led to a significant increase in mental workload. Following
this 5-minute manipulation period, participants proceeded with
the reconstruction, and we evaluated the resulting outputs. Regard-
ing the proposed method, participants could perform the whole
operation once, although the proposed framework is the human-in-
the-loop method. This is because reconstruction of our dataset took
2-3 minutes, and it was hard to make the second attempt within 5
minutes. The order in which participants used the proposed and
baseline methods was counterbalanced to eliminate order effects.
To ensure that the comparison focused solely on the interaction
methods for false match removal, we did not include the task of
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identifying incorrectly reconstructed cameras. Participants were
provided with information on which camera poses were incor-
rect from the outset. Additionally, we used the same dataset for
both conditions, as we estimated that any potential learning effect
related to the dataset would likely have minimal impact on the
results because participants were given information on cameras
with incorrect poses and shooting conditions for the dataset.

7.2 Procedure

The experiments were conducted as follows:

First, we obtained informed consent from each participant. We
explained the experiment’s purpose, procedure, estimated duration
(approximately 30 to 50 minutes), data handling protocols, and the
participants’ rights.

Next, we provided an overview of the task background, intro-
ducing the basic concepts of SfM and explaining how false matches
can negatively impact reconstruction quality. Participants were
informed that their task involved removing these false matches to
enhance the reconstruction results.

We then detailed how the dataset was captured, including the
environment of the capture, the camera locations at the time of
capture, and the characteristics of the images, to help participants
better understand the task at hand.

Following this, we gave instructions on how to use the systems
for both the proposed method and the baseline method. We detailed
the functions of each system, the specific steps for removing false
matches, and important operational considerations.

After the instructions, participants engaged in a practice session
for the first method using a practice dataset. This hands-on expe-
rience allowed them to familiarize themselves with the system’s
operations.

Subsequently, participants proceeded to the main session for the
first method. They had 5 minutes to remove false matches, after
which the reconstruction process was executed. Participants took a
short break during the reconstruction.

Following the break, participants began to practice with the
second method in the same manner. After ensuring they were com-
fortable with the system, the main session for the second method
began. Participants spent another 5 minutes removing false matches
and then executed the reconstruction process.

Upon completing both sessions, participants filled out a ques-
tionnaire to provide subjective evaluations and feedback.

7.3 Evaluation Metrics

We used several metrics to assess the accuracy of camera pose esti-
mation and the effectiveness of user guidance on the reconstruction
results. Specifically, we calculated the Mean Squared Error (MSE)
for translation and the Mean Absolute Error (MAE) for rotation
to evaluate the accuracy of reconstructed camera poses. To mea-
sure the accuracy of false match removal, we computed recall and
precision. Additionally, we evaluated participants’ subjective ex-
periences using the User Experience Questionnaire Short Version
(UEQ-S).

7.3.1  Error for Translation and Rotation. We calculated the error
between the camera poses obtained through user intervention and
the ground truth data described in Section 5.2.
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Since SfM results do not contain scale and orientation informa-
tion of the real world, we aligned the ground truth and the users’
reconstruction results to a common coordinate system. Specifically,
we assumed that the 27 cameras that were correctly reconstructed
(out of 48) remained unchanged by user interventions. Using these
27 correctly reconstructed cameras, we estimated the scale and
rotation to transform the users’ reconstruction results into the
coordinate space of the ground truth data. After alignment, we
calculated the translation MSE and the rotation MAE for the 21
cameras that had incorrect poses in the initial reconstruction.

The MSE for translation was calculated from the cameras’ posi-
tional differences between the ground truth and the reconstruction
results. The MAE for rotation was determined by computing the dif-
ferences in angles (degree) using a rotation matrix for each camera
pair.

7.3.2  Recall and Precision on False Match Removal . We used the
following definitions to calculate recall and precision for false match
removal:

o Recall: The ratio of false matches correctly removed by the
participants against all the false matches in the ground truth.
It evaluates the completeness of the false match removal
process.

o Precision: The ratio of false matches correctly removed by
the participants against all the matches removed by the par-
ticipants. It assesses the accuracy of the false match removal.

The mathematical formulations are:

TP
Recall = —— 1
T TPLEN )

Precisi TP @
recision = —mm—

CIOn = T FP

Where:

TP (True Positives): false matches correctly removed both by
the participants and in the ground truth.

FN (False Negatives): false matches removed in the ground
truth but not removed by the participants.

FP (False Positives): matches removed by the participants
but not removed in the ground truth.

We also calculated the F1 score from the recall and precision
results.

7.3.3  User Experience Questionnaire (UEQ-S). To assess partici-
pants’ experience, we used the User Experience Questionnaire Short
Version (UEQ-S). Participants responded to eight questions for each
method, from which we calculated the Pragmatic Quality, Hedonic
Quality, and Overall scores. The evaluation was conducted based
on the benchmarks published by UEQ-S [28].

7.4 Results

Table 1 presents the results of our objective metrics. With the ex-
ception of P2’s precision result, all metrics indicate that for every
participant our method was substantially more accurate and pro-
duced higher quality results compared to the baseline. There was,
however, a failure case with our method for P5, which we discuss
in Section 8.2.
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Comparing the average camera pose error across all participants,
our method achieved a mean translation MSE of 1.4227 with a 95
% confidence interval ranging from 0.5067 to 2.3388. In contrast,
the baseline method had a mean translation MSE of 6.4116 with a
95 % confidence interval from 5.7085 to 7.1148. The lack of overlap
between these confidence intervals suggests a significant improve-
ment in translation accuracy using the proposed method. Similarly,
for rotation MAE, the proposed method’s mean was 6.6481 (95 %
CI [2.7830, 10.5132]) compared to the baseline’s 115.98 (95 % CI
[86.70, 145.26]), further indicating a significant enhancement in
performance.

Regarding false match removal, the proposed method also demon-
strated superior performance. The mean recall for the proposed
method was 0.88 with a 95% confidence interval ranging from 0.78
to 0.98, whereas the baseline method had a mean recall of 0.50 (95%
CI [0.42, 0.59]). The mean F1 score was 0.93 (95% CI [0.86, 0.97]) for
the proposed method, compared to 0.66 (95% CI [0.57, 0.73]) for the
baseline. For precision, the proposed method achieved a mean of
0.98 (95% CI [0.96, 1.00]) versus the baseline’s 0.93 (95% CI [0.90,
0.97]). Although there is a slight overlap in the 95% confidence in-
tervals for precision, the overall results indicate that the proposed
method outperforms the baseline in mismatch deletion accuracy.

Similar to the objective measurements, the subjective ratings of
all participants on the UEQ-S were more favorable for our method
compared to the baseline (Figure 8). The UEQ-S results of our
method reveal high scores in both Pragmatic Quality (e.g., efficient
and easy to use) and Hedonic Quality (e.g., interesting and enjoy-
able), suggesting an overall positive user experience. Pragmatic
Quality reflects the system’s ability to support users in achieving
their tasks efficiently, while Hedonic Quality indicates the sys-
tem’s capability to evoke emotional satisfaction and engagement.
Compared to the benchmark provided in the UEQ-S guidelines,
the scores of our method fall within the *Above Average*’ range,
demonstrating that the system performs above average in both
dimensions. In contrast, the scores of the baseline were rated as
"Bad." These results confirm that our technique offers a superior
user experience compared to the baseline. These findings align
with our objective to create a system that is not only functional but
also enjoyable to use, addressing both task-oriented and emotional
needs of users.

8 Discussion and Limitations
8.1 Advantages of Our Method

The experimental results revealed the clear superiority of our user-
guided method. Participants were able to significantly improve
reconstruction accuracy using our tools and user interface. Addi-
tionally, the results confirmed that false matches could be deleted
with high precision, demonstrating that users can efficiently en-
hance reconstruction results within a limited task time. The UEQ-S
scores further validated that our method offers a superior interac-
tion experience for detecting false matches.

Moreover, our method proved to be applicable across various
scenes. Notably, even in complex scenarios with a large number

4Above Average’ indicates that the system’s user experience is better than most
comparable systems, while ‘Bad’ reflects significant usability or engagement issues
[28].
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Figure 8: User Experience Questionnaire (UEQ) short version
results. The chart shows user feedback on the usability and
experience of our technique, measured across two dimen-
sions: Pragmatic quality (left) and Hedonic quality (right).
Error bars show the standard deviation, with results suggest-
ing an overall positive experience with our system.

of images (more than 300), users could easily select and relocate
cameras with erroneous subsequences. Furthermore, even when
users were unaware of the exact shooting positions, they still man-
aged to improve reconstruction by accurately setting the cameras’
relative positions.

8.2 Limitations of Our Method

In the experiment, an instance occurred with participant P5 where
the model became fragmented after manipulation, as illustrated
in Figure 9 (a). This likely happened because the deletion of false
matches inadvertently removed some correct matches as well. While
specifying the matching pairs to be deleted by defining camera
poses and their view frustums is possible, users cannot see the re-
sults until reconstruction is complete, necessitating a trial-and-error
approach. However, given that the proposed method integrates a
human-in-the-loop design, users have the flexibility to revert and
retry if their initial attempt is unsuccessful.

(a) Failure case: reconstruction result of P5 (b) Challenging case: indt;or dat.aset of [34']
Figure 9: (a) Failure case: The intervention result from P5,
where the reconstruction split into two separate models. (b)
Challenging case: An indoor dataset from [34], where the
vertical hierarchy in the environment makes it difficult to
perform effective interventions using the top-down view of
our UL

Additionally, since our interface uses a 2D top-down view, users
may find it challenging to adequately visualize complex 3D struc-
tures. For instance, as depicted in Figure 9 (b), when multiple cam-
eras are arranged vertically, users must rely solely on the images
to determine which layer they are editing. To better address these
complex 3D scenes, our UI could be enhanced by incorporating a
3D view, allowing for more precise and intuitive manipulation of
camera positions.
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Table 1: Translation MSE, Rotation MAE, Recall, Precision, and F1 Score measurements for each participant of the study. Except
for P2’s Precision score, all metrics show superior results for our method.

Participant ~ Translation MSE |  Rotation MAE (deg) | Recall T Precision T F1 Score T
ID Baseline Proposed Baseline Proposed Baseline Proposed Baseline Proposed Baseline Proposed
P1 6.41608 1.56911 133.267 10.496 0.31 0.62 0.88 1.00 0.46 0.77
P2 7.02564  0.00061 97.559 0.668 0.41 1.00 0.96 0.94 0.57 0.97
P3 5.36414  2.09507 76.639 8.523 0.57 0.92 0.90 0.99 0.70 0.95
P4 6.04193  2.09787 61.630 8.762 0.56 0.83 0.99 1.00 0.72 0.91
P5 5.33908 - 168.106 - 0.51 0.92 0.95 0.98 0.66 0.95
P6 6.87383  2.10698 121.426 8.862 0.61 0.92 0.97 0.98 0.75 0.95
pP7 7.81761 2.08914 136.051 8.678 0.56 0.82 0.95 1.00 0.71 0.90
P8 6.41488  0.00048 133.221 0.547 0.50 1.00 0.88 0.94 0.64 0.97

Average 6.41165 1.42275 115.987 6.648 0.50 0.88 0.93 0.98 0.66 0.93

Although the proposed method relies on user interventions based
on domain knowledge and observations of captured scenes, it re-
mains unclear the minimal information that is necessary for effec-
tive interventions. Consequently, we need further investigation to
determine under what condition the SfM correction of captured
scenes is feasible. Furthermore, overlaying a shooting route on a 2D
map along with reconstructed camera positions and their captured
order could help complement users’ lack of knowledge, which we
consider one of the future works to improve our user interface.

8.3 Combining with Other 3D Reconstruction
Correction Techniques

We do not claim that our method is the optimal choice in all scenar-
ios. In our experiment, annotation on around 50 images could be
completed in about five minutes, whereas annotating a dataset of
roughly 300 images took over 30 minutes. These observations sug-
gest that our user interface is limited to datasets consisting of a few
hundred images. Nevertheless, even when dealing with thousands
to tens of thousands of images, our interface can still be valuable
for correcting specific (sub)sequences within the large-scale data
that are incorrect. Once these small-scale corrections are made, the
results can be integrated into the larger dataset using techniques
such as automatic merging [6] or control points in RealityCapture.

Additionally, our method can complement other false match
correction techniques. For example, false matches that are not iden-
tified by automatic algorithms can be effectively removed using
our approach. Furthermore, global structure-from-motion methods
can be applied to the database once it has been corrected using
our method. We believe that user intervention via our technique is
particularly effective when existing automatic correction methods
fall short.

9 Conclusion

In this paper, we proposed a user-guided method for correcting
false matches in Structure-from-Motion (SfM) reconstructions by
leveraging users’ knowledge of the captured environment. This ap-
proach enables users to efficiently identify and relocate incorrectly
reconstructed cameras, adjust their view frustums, and update the
matching database to improve reconstruction results. The user in-
terface (UI) we developed facilitates this process, allowing users to

effectively perform necessary interventions. Experimental results
demonstrated that our method outperforms manual removal of
false camera matches both in terms of reconstruction accuracy and
user experience. However, there were a few challenges, such as
instances where correct matches were inadvertently deleted, caus-
ing a split in the model. We plan to address these issues in future
work. Enhancing the UI to include both 2D and 3D views could
help users better visualize and manipulate complex 3D camera ar-
rangements, especially in scenes with significant vertical variations.
Additionally, integrating our method with automatic false match
correction algorithms may improve scalability and efficiency when
dealing with large-scale datasets. By combining the strengths of
interactive and automatic approaches, we aim to further enhance
the robustness and applicability of SfM reconstruction workflows.
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